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The nonlinear development of the most unstable Gortler vortex mode in boundary- 
layer flows over curved walls is investigated. The most unstable Gortler mode is 
confined to a viscous wall layer of thickness O(G-i) and has spanwise wavelength 
O(G-i); it  is, of course, most relevant to flow situations where the Gortler number 
G % 1 .  The nonlinear equations governing the evolution of this mode over an O(&) 
streamwise lengthscale are derived and are found to be of a fully non-parallel nature. 
The solution of these equations is achieved by making use of the numerical scheme 
used by Hall (1988) for the numerical solution of the nonlinear Gortler equations 
valid for 0(1) Gortler numbers. Thus, the spanwise dependence of the flow is 
described by a Fourier expansion whereas the streamwise and normal variations of 
the flow are dealt with by employing a suitable finite-difference discretization of the 
governing equations. Our calculations demonstrate that, given a suitable initial 
disturbance, after a brief interval of decay, the energy in all the higher harmonics 
grows until a singularity is encountered a t  some downstream position. The structure 
of the flow field as this singularity is approached suggests that  the singularity is 
responsible for the vortices, which are initially confined to the thin viscous wall layer, 
moving away from the wall and into the core of the boundary layer. 

1. Introduction 
Our concern is with the effect of nonlinearity on the growth of the most unstable 

Gortler mode in the high Reynolds number flow over a wall of variable curvature. 
The most unstable Gortler mode was recently identified by Denier, Hall & Seddougui 
(1990, 1991) who, in the context of the receptivity problem for Gortler vortices, re- 
examined the linear Gortler equations in the limit of large Gortler number, G. Denier 
et aZ. (1990, 1991 hereafter referred t o  as DHS), investigated both the inviscid Gortler 
vortex modes of O(1) wavenumber and the right-hand branch modes of O(@) 
wavenumber previously considered by Hall (19824, and were able to demonstrate 
the existence of a most unstable Gortler mode. This mode was found to  lie in the 
wavenumber regime O(Gi) with a spatial growth rate O(@) (see figure 1 )  and was 
found to be confined to a thin, O(G-i), viscous layer located a t  the material boundary. 
This should be compared with the inviscid and right-hand-branch Gortler modes 
which have growth rates O(Gi). Note that it is readily shown that for the temporal 
evolution of Gortler vortices the growth rates are of O(G$ over the whole wavenumber 
spectrum; in fact the temporal evolution of the Gortler vortex modes is of no 
practical interest since in situations where Gortler vortices are found to occur 
experimentally their initial development is apparently independent of time. An 
independent investigation of the growth rates of Gortler vortices at high Gortler 
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Wavenumber - - O(G9 * 
FIG CJRE 1. A schematic representation of the growth rate versus wavenumber in the large Gortler 
number limit. The regions corresponding to the inviscid, most unstable and right-hand branch 
Gortler modes, respectively, are marked. 

numbers is given by Timoshin (1991); the conclusions of Timoshin are consistent 
with DHS. 

Previous investigations into the nonlinear evolution of GBrtler vortices in spatially 
growing flows are limited to the work of Hall (1988), in which the fully nonlinear 
Gortler governing equations were solved numerically for both O( 1) wavenumber and 
Gortler number, and that of Hall & Lakin (1988), in which a fully nonlinear mean 
flow/first harmonic theory is developed for the right-hand branch Gortler modes. 
(See also Aihara 1976 who derived a nonlinear differential equation to determine the 
evolution of Gortler vortices ; this calculation, however, ignores non-parallel effects 
present due to boundary-layer growth and employs other approximations which 
cannot be justified.) However, for a discussion of Gortler vortices in unsteady 
boundary layers see for example Sabry & Liu (1991) for impulsively started flows and 
Hall (1984) for time-periodic flows. Note in addition that Sabry & Liu infer a 
connection between the growth of vortices in impulsively started flows and Blasius 
flow. The results of Hall (1988), which are applicable to 0(1) wavenumbers and 
Gortler numbers for which a full numerical treatment of the nonlinear equations 
governing the vortex evolution is required, demonstrated that as the vortex evolves 
downstream the energy of the flow becomes concentrated in the mean flow correction 
and fundamental harmonic. These results, coupled with the fact that the effect of 
nonlinearity in this problem is to stabilize the flow, suggest that the far downstream 
structure of the velocity field, in the absence of any unstable secondary modes which 
might exist (see also $4), is governed by a first harmonic/mean flow theory. 
Motivated by these results, together with the earlier weakly nonlinear theory of Hall 
(1982b), Hall & Lakin (1988) (also see related work by Benney & Chow 1989) 
subsequently developed a first harmonicjmean flow theory for short-wavelength 
large-amplitude Giirtler vortices. (We note that the small-wavelength approximation 
inherent in this theory is not physically unrealistic since for a growing boundary 
layer the effective wavenumber of the Gortler vortices increases in the downstream 
direction.) This theory then demonstrates that the mean flow adjusts due to the 
presence of the vortex state so as to render the large-amplitude vortices neutrally 
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stable. The mean flow is then driven by the vortex velocity field and its form is 
completely altered from that which exists in the absence of the vortex motion. 
Subsequently Hall & Seddougui (1990) showed that the large-amplitude vortex 
states found by Hall & Lakin (1988) are unstable to wavy vortex modes trapped in 
the shear layers bounding the region of vortex activity. 

The above results, however, are not directly applicable to situations where the 
Gortler number is large and the wavenumber is not close to its neutral value. Here 
we would expect, on the basis of the linear receptivity theory of DHS, the most 
unstable linear Gortler mode to be excited by, for example, small localized surface 
imperfections. One such area where this scenario would be applicable is the flow over 
turbine blades where, due to the large Reynolds numbers encountered in such 
situations together with an appreciable curvature, we would anticipate large Gortler 
numbers and thus the possible excitation of the most unstable Gortler mode through 
the presence of small surface defects. For these reasons a study of the nonlinear 
evolution of the most unstable Gortler modes is both warranted and is of real 
practical importance. 

The outline of the rest of the paper is as follows. I n  92 we derive the nonlinear 
equations governing the downstream evolution of the most unstable Gortler vortex 
mode. A brief discussion of the numerical scheme employed to solve these equations 
is given. In  $3 we present the results of our numerical calculations along with a 
discussion of these results. Finally in $4 we draw some conclusions. 

2. Formulation of the governing equations 
Consider the flow of a viscous incompressible fluid, of density p and kinematic 

viscosity u, over a wall of variable curvature a-lX(x/L). Here a and L are the typical 
lengthscales associated with the radius of curvature of the wall and the downstream 
development of the flow, respectively. Denoting by U,  the free-stream speed, 
sufficiently far from the wall, we define the usual Reynolds number Re by 

Re = U,  Llv ,  (2.1) 

G = (2L/a)  Ref, (2.2) 

and restrict our attention to the limit Re + 00 with the Gortler number, G ,  defined by 

held fixed. Let (x, y, x )  denote the usual Cartesian coordinates, non-dimensionalized 
with respect to L,  L Red, L Re4 respectively. The corresponding velocity field is 
taken to be 

where we will assume that (a(x, y), @(x, y), 0) corresponds to the Blasius boundary 
layer, and that (u, v, w) and the corresponding pressure perturbation p are functions 
of (x, y, z). By substituting the above relations into the Navier-Stokes and continuity 
equations we find the governing equations for u, v, w and p ,  correct to O(Re-;), to be 
given by 

u = U,(a + u, Re-i(v+ v)  , Re-fw ) , (2.3) 

(2.4) I U,+V,+W, = 0, 

uYy + u ~ ~ - v ~ z ~  = ,UU, +ax u +VU, + Q1, 
vYy + uZz - G X ~ U  -py = tivX + v ,  u +,PV, +gy v + Q2, 

wyy +7nz, - p z  = aw* -t @wy + Q3. 
Here the nonlinear functions Q1, Q2,  Q3 are given by 

Q1 = U U ~ $ V U ~ + W U ~ ,  Q2 = u v , + z r ~ ~ + w v ~ + ~ ~ ~ ~ ,  Q3 = UW,SVW~+WW,. (2.5) 
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Note that we have implicitly assumed above that Gortler vortices develop spatially 
so that time derivatives of the velocity field have been neglected. We have made this 
assumption because the fastest growing mode of DHS is intrinsically a spatial rather 
than a temporal mode and because there are no experiments which suggest the 
importance of unsteady effects in the initiation of Gortler vortices. Thus we are in 
effect assuming that the Gortler mechanism in the wavenumber regime under 
consideration is a convective instability mechanism. However recently Ruban ( 1990) 
has argued that a t  low vortex wavenumbers the Gortler mechanism is an absolute 
instability. The latter result is not consistent with experimental observations and is 
contradicted by recent work by Choudhary & Hall (1992). By setting the nonlinear 
terms Q1, Q2, Q3 equal to zero in (2.4) we recover the linearized equations of Hall 
(1983). Tn the limit of large spanwise wavenumber, % 1, Hall (1982a) 
demonstrated that in this regime the right,-hand branch of the neutral curve scales 
as G = O(lc4), where k 9 1 is the spanwise wavenumber. 

For O(1) values of the Gortler number the fully nonlinear system (2.4) has been 
solved numerically hy Hall (1988). However, in situations in which the Gortler 
number is large, the results of this work would be of limited relevance since we would 
expect that in this case the most unstable linear Gortler mode would soon dominate 
the flow field. In  fact, the receptivity problem for the most unstable mode has been 
considered by DHS who demonstrated that the coupling coefficient between a 
surface perturbation and the induced velocity field is an O(1) quantity and as such 
we would expect these modes to be generated by, for example, isolated roughness 
elements on the surface. 

To consider the nonlinear development of the most unstable Gortler mode we 
define new variables 

and expand the velocity field and pressure in the form 

(2.6) 

(2-7) 

Y = Gky, 2 = G ~ X ,  X = G ~ ( x - x * ) ,  

(u, V ,  w , p )  = Gi(G-gU, V, W, GkP) + . . . . 
Here, the scaling in X anticipates the result from DHS that the downstream growth 
rate of the most unstable Gortler mode is O(Gg). The governing equations (2.4) then 
become, to leading order in powers of G-2, 

U,+V,+Wz=O, 
U,, + Uzz-p(x*)  v = pYU, + UU, + VU, + wu,, 

vyy+ v,,-~(x*)pYu-Py = pY'V,+ uv,+ vv,+ wvz+tx(x*) u2, 
w,, + w,, - Pz = pYW, + UW, + VW, + WW,, 

where we have made use of the fact that a - p(x* )  y +  .. . as y + 0 .  With a suitable 
resealing we can remove the constant coefficients in the above system, and hence, 
without loss of generality, we will assume p = x = 1 in the above system. The 
governing equations are then 

(2.8a) 

(2.8b) 

( 2 . 8 ~ )  

(2 .8d )  

u, + vy+wz = 0, 

uyy + u,, - v = YU, + UU, + vu, + WU,, 
v,, + V,, - YU- Py = Y v, + UV, + VV, + WV, + tuz, 

wy y + w,, - Pz = YW, + uw, + vw, + ww, . 

The boundary conditions appropriate to (2.8) are found to  be 

u= V =  w = 0 ,  Y = O ,  U + A ( X ) ,  Y+m,  (2.9) 
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where the displacement function A is independent of 2 (ensuring that the nonlinear 
vortex state is confined to the wall layer). We note here that A is completely 
determined by the wall-layer solution. To complete the description of the flow regime 
we require a region where y = O( 1) in which the mean flow adjusts to its free-stream 
value. However, that region is passive so we shall not consider it here. The nonlinear 
system (2.8), (2.9) is the nonlinear generalization of DHS and was previously written 
down, but not solved, by Timoshin (1991). 

I n  order to reduce the system (2.8) to a form suitable for computational purposes 
we eliminate W and P from the linear terms in ( 2 . 8 c ,  d )  to  give 

Nl = UUx+VUy+WUz,  N 2 =  UVX+VVy+WVz+~cF, N 3 =  UWx+VWy+WWz. 
(2.11) 

The numerical procedure employed in the solution of (2.8a, b)  and (2.10) subject to 
the boundary conditions (2.9) is based on that used by Hall (1988) in the solution of 
the nonlinear Gortler equations at O( 1) Gortler numbers, and for this reason we give 
only the salient details of the scheme here. 

Anticipating the well-known result that nonlinear interactions in the Gortler and 
Taylor problems do not generate a mean flow component in the spanwise direction 
we write 

a, W 

(U,  V )  = (Uo, V,) + C (U,, Vn) cosnkz, W = C W,sinnkz, (2.12) 
n=1 n=1 

where, without loss of generality, we have chosen the origin in the spanwise direction 
such that U and 17 are even in Z whilst W is odd in 2. Substituting the expansions 
(2.12) into (2.8a, b )  and (2.10) and equating like Fourier components gives, for the 
mean flow correction, 

U,,, - V, = YU,, + U, U,, + F, [Joy +Po, (2.13) 

where 
1 "  

l(,=, C (VmTJmy-UmVmy-21cmUmWm), 
m=i  

whilst V, is determined from 
au, av, 
ax ay 
-+- = 0. (2.14) 

From a computational standpoint we must necessarily truncate the infinite sums 
occurring in (2.12) at some suitably large value of the upper limit. Therefore we will 
formally replace the upper limit in (2.12) by N .  

The governing equation for the higher-harmonics terms is then given by 

U n , , - n 2 k 2 ~ , - ( l + U , , ) V n - ( Y + U o ) U n x  = Fn 
N-1 

= C Vn-, Um - Un-m V,, - mlc WnPm Urn - mlclJn-m W, 
m=l 
n + l  

N - n  

+ C Vn+m u m Y - u n + m  Vm,-mkWn+m Um-mkUn+m Wm 
m=l 
n + N  
N + C Vm-nUmy-Um-nVmy-mlcWm-,Um-m~Um-n W,, (2.15) 

m-n+l 
n + N  
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where we have made use of the continuity equation to eliminate the X-derivatives on 
Urn from the nonlinear terms on the right-hand side of (2.15). A similar equation 
governing the evolution of the components V, can be obtained from (2.10) which, for 
brevity, is not presented here. 

We now proceed with a brief description of the scheme used to solve (2.13), (2.15) 
together with the corresponding equation for the V,. Suppose then that U,, V, and U,, 
V,, W,, for n = 1,2,  ..., N are known at some particular X-station, X ,  say. The mean 
flow equation (2.13) is discretized using finite differences in the X -  and Y-directions 
according to 

- v y  
e 

2u;m+l+ q - i m + i  

r t + l r n + l -  h2 

Here the indices m and n refer to the grid point X = XO+rns, Y = nh. Initially the 
nonlinear terms on the right-hand side of (2.16) are evaluated with k = m- 1 which 
yields a tridiagonal system for U, at X = X ,  + (m + 1) E .  Similarly the finite-difference 
discretization of (2.15) can be used to give Urn (m = I ,  ..., N )  at X = X,+ (m+ 1) E as 
can the corresponding equation for V,, but now by solving a pentadiagonal system. 
The nonlinear terms can now be expressed in terms of the velocity field evaluated at 
X = X ,  + (m + 1 )  E and the equations are again solved for the flow quantities at  X = 
X ,  + (m + 1) 8, repeating the iteration procedure until the changes in UT+l etc. are 
sufficiently small. In  this way (2.16) and the corresponding equations for Urn, V, are 
solved for k = rn by iterating on the nonlinear terms on the right-hand sides. This 
scheme can then be used to march the solution downstream from some initial 
position given some suitable form of initial perturbation to the velocity field. 

3. Results and discussion 
We now describe the results obtained from the numerical scheme outlined above. 

All results presented are for the choice of wavenumber k = 0.476 which corresponds 
to the critical wavenumber of the most unstable Gortler mode identified by DHS; 
some discussion on the form of the solutions for different values of the wavenumber 
will be given. The basic state was perturbed at  X = 1 by imposing the disturbance 

and integrating the linearized equations to X = 101. Here A is a measure of the 
disturbance amplitude. At this stage the disturbance has attained its maximum 
growth rate according to linear theory (see DHS). The linear velocity field was then 
given an amplitude equal to the maximum X-velocity component whilst all higher 
harmonics were set equal to zero. The nonlinear equations were then integrated for 
x> 101. 

We note that the precise form of the initial perturbation (3.1) is of little importance 
in the linear stage of the evolution of the most unstable mode. This can be seen by 
considering the linearized version of the governing equations ; a comparison between 
the present work and the eigenvalue problem of DHS (see their equation (5.14)) 
shows that the linearized governing equations, subject to the initial condition (3.1), 
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constitute an initial-value problem corresponding to the given spanwise wave- 
number. Thus. given any reasonable initial condition (i.e. one which satisfies all the 
boundary conditions on the disturbance velocity field) the solution of the linearized 
equations will evolve downstream in to the characteristic shape of the eigenfimction 
of DHS (in fact, the downstream form of the velocity field will be a constant multiple 
of this eigenfunction) and the linear growth rate will approach the value found from 
the eigenvalue problem ; for the results presented here this corresponds to Ic = 0.476, 
/3 = 0.312 (here ,13 is the linear growth rate). This should be compared with the 
corresponding results of Hall (1983), for the evolution of vortices with O( 1 )  Gortler 
number, where the growth rate and the structure of the linear modes exhibit a 
sensitive dependence on both the form of the initial disturbance and the position a t  
which the initial disturbance is imposed. This difference is readily explained by the 
fact that  the most unstable mode of DHS evolves in what is essentially a parallel 
manner (due in turn to the small 2-scale over which these modes develop) whereas 
the linear modes of Hall (1983) exhibit an inherent non-parallel structure (due to the 
O( 1) x-scale over which these modes develop). Having demonstrated that any 
reasonable initial conditions will evolve rapidly into the fastest growing mode of 
DHS we could equally well start the nonlinear ralculation a t  X = 101 with the 
eigenfunction of the fastest growing mode. The results obtained by starting the 
nonlinear calculation in this way are indistinguishable from those presented here. 

I n  order to measure the growth of the harmonic components of the flow field we 
define the energy of the nth harmonic to be 

E ,  = J : { q ( X , Y ) + e ( X , Y ) + W P , ( X . Y ) ) d Y ,  n = 1,2 ,  ... . (3.2) 

Note that we do not calculate the energy of the mean flow correction as in Hall (1988) 
since in the present case we have U, + U,(X) when Y +  GO. The growth rate a, (X)  of 
the nth mode is then defined as 

(3.3) 

In  the absence of the nonlinear terms t h e  growth rate rl(X) would be twice that 
calculated by DHB ; in the light of the discussion of the previous paragraph al(X) -> 
0.624 as X +  co (see figure 2). 

With the perturbation to t’he basic state given by ( 3 . 1 )  the governing equat]ions 
were solved for the choice of parameters h = 0.1, e = 0.001 with Y, = 100 
(corresponding to  1000 grid points in the normal direction). These values were chosen 
after significant testing of the code for accuracy and stability. With h fixed the 
calculations were carried out for various values of 6 until the results from consecutive 
runs agreed to within graphical accuracy. The streamwise step size e was then fixed 
and h was decreased, wit.h Y, fixed, until, again, the results from consecutive 
calculations had converged, to  within graphical accuracy. We then fixed both 6 and 
h and varied Y, which resulted in little or no change in the computed flow quantities. 
T t  was found that the numerical scheme was stable for e = O(h2). In figure 3 we 
present a comparison between calculations performed for E = 0.002 and e = 0.001 
with the normal step length h, = 0.1 fixed (see figure caption). Up until the stage at 
which the caloulation for e = 0.001 fails the results are identical (note that the results 
for e = 0.002 have been offset). However, there is a small, yet significant, discrepancy 
on the position at which the breakdown occurs. We interpret this discrepancy in the 
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FIGURE 2. The linear growth rate g1 versus X for wavenumber k = 0.476. Dashed line shows 

the position of the most unstable mode of DHS. 
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FIGURE 3. Comparison of results obtained for different streamwise step lengths. Solid line e = 
0.001, broken line e = 0.002. In order to distinguish tho plots for e = 0.002 these have been offset 
by -0.5. Plotted in In (E,) ( j  = 1 ,  . . ., 4) versus X .  

breakdown position which occurs for the larger of the two values of 6 as being due 
t o  the numerical scheme essentially ‘jumping’ over the breakdown position and 
continuing into a region where, in fact, the numerical code is no longer valid. Various 
calculations were done for which N = 4, 8 and 16 Fourier modes in the spanwise 
direction were retained; the results presented are for the case N = 8 (the results from 
the calculations for N = 4 and 16 show little, if any variations from those obtained 
f o r 3  = 8) .  In  figure 4 we present a comparison of the results obtained with N = 8 and 
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- 20 
102 104 106 10s 

X 
FIGURE 4. Comparison of results obtained by retaining different numbers of Fourier modes. Solid 
line N = 8, dashed line N = 16. In order to distinguish the plots for N = 16 these have been offset 
by -0.5. Owing to limitations on available computing time the results for N = 16 were obtained 
for a streamwise step length of 6 = 0.01. 

16 Fourier modes retained in the expansions (2.12). Again the results are identical, 
to within graphical accuracy for the two cases. (Note that the discrepancy in the 
breakdown positions for the N = 8 and 16 calculations is due to the increased 
streamwise step length required to make the latter calculation feasible.) The 
parameter values quoted above were then chosen with two criteria in mind; firstly 
they were chosen to be suitably small in order to resolve both the normal and 
streamwise structure of the flow in the later stages of the calculations and secondly 
they were chosen so as to allow the calculations to be performed in an acceptable 
amount of time. All results presented were obtained on a Cray Y-MP at the NASA 
Langley Research Centre. 

In figure 5 we present a plot of the energy of the nth harmonic as a function of 
downstream position X .  Here we see that, after an initial interval of decay due to the 
solution rapidly adjusting from its linear state to a fully nonlinear state in which the 
mean flow correction is driven by the vortex velocity field, the energy in each mode 
is a monotonically increasing function of x .  This was found to  continue until the 
point where the energy in each harmonic undergoes a period of rapid growth 
(occurring over a small streamwise interval). However, at  this stage of the 
calculation a point of separation has been encountered beyond which we expect 
reversed flow. Our numerical scheme is then no longer valid, as it relies on the 
parabolic nature of the governing equations and as such is not able to deal with the 
reversed flow in the streamwise direction. Numerous calculations were performed in 
order to verify this; in particular, increasing the number of modes retained in our 
expansions from N = 8 to N = 16. The results from this calculation were found to 
agree with those for N = 8 Fourier modes to within the graphical accuracy of figure 
5. Similarly, decreasing the step size in the streamwise direction was found to have 
little effect on the results of the calculation. All results presented were obtained for 
the input disturbance amplitude d = 0.075. In  order to test the effect of varying the 
amplitude of the initial disturbance velocity field we repeated our calculations for 
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FIGURE 5 .  Plot of In ( E j )  ( j  = 1, . . ., 8 )  versus downstream position X .  

various values of the amplitude A .  The results of these calculations demonstrated 
that varying d had no qualitative effect upon the breakdown which is  encountered 
for the case presented, namely d = 0.075; decreasing A has the effect of delaying the 
breakdown. For this reason we restrict our attention to the case d = 0.075; the 
results presented can then be considered as typical for the whole range of input 
amplitudes. 

Before proceeding with a discussion of this breakdown we make some comparison 
of our results with those of Hall (1988). I n  figure 6 we present a plot of the growth 
rates vn (n = 1 ,  . . . ,8) as a function of the downstream position X .  Here we see that 
the growth rates, after an initial adjustment stage wherein the flow adjusts in order 
to accommodate the nonlinear terms, increase with increasing X ;  in fact the growth 
rates are ordered such that aJ > a3-1 ( j  = 2, ..., 8). However, the growth rate of the 
first harmonic, vl, is decreased from that found in the absence of the nonlinear terms ; 
in this respect nonlinear eflects are stabilizing. This should be compared with the 
results of Hall (1988) who found a similar result in that the growth of the first 
harmonic is decreased in comparison with that obtained from the linearized system. 
However. an important distinction arises between the present work and that of Hall 
(1988) in that for the case of 0(1)  Gortler numbers and wavenumbers the energy is 
distributed predominantly in the first harmonic and mean flow correction whereas in 
the present case no such partition of energy is found. 

We now turn our attention to a discussion of the breakdown alluded to above. As 
noted earlier our numerical scheme was found to break down at some downstream 
position. This breakdown was characterized by the normal, and subsequently the 
spanwise, components of the velocity field undergoing a period of rapid growth over 
a small streamwise interval, typically of the order of 5 streamwise step lengths, 
whereas the streamwise velocity component shows little, if any, variation over this 
interval. 

I n  order to determine whether this breakdown was due to  a singularity of the 
governing equations, we repeated our calculations with an increased number of 
Fourier modes retained. As each higher harmonic is forced by it lower harmonics we 
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FIGURE 6. The nonlinear growth rates u, (j = 1, ..., 8) versus X .  

would expect that, if such a singularity were encountered, increasing the number of 
Fourier modes retained in our calculations would have a dramatic effect upon the 
latter stages of the calculation. However, this was found not to be the case. The 
inclusion of additional Fourier modes was found to have little effect on the 
breakdown. For this reason we feel justified in eliminating the possibility of a 
spanwise localized singularity in the governing equations as being the underlying 
cause for the breakdown which is encountered. 

In the light of the above discussion an alternative mechanism for the breakdown 
must be found. An obvious candidate immediately presents itself in the form of a 
singularity due to flow separation. From the work of Hall (1988) we know that flow 
separation is encountered in the problem of U(1)-wavelength Gortler vortices a t  U(1) 
Gortler numbers (see also the discussion in Hall & Horseman 1991). As such, flow 
separation would appear as the likely candidate for the breakdown experienced in 
the present problem. 

In order to test this conjecture we calculated the total skin friction 

N 

T ~ ( X ,  2) = 1 + C Uny(X,  0) cos knZ, 
n=O 

(3.4) 

a t  each downstream position on a uniform spanwise grid of 100 points over one half 
vortex wavelength. Here, we note that the first term on the right-hand side of (3.4) 
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Z = n / k  

X 108 0 ,037 

FIGURE 7 .  Contour plot of the skin frictJion ( T ~ -  1) in the (X, %)-plane. Here X is in the interval 
(108,108.037) and 2 is in the range (0, n / u ) .  

arises from the uniform shear, a - Y ,  in the wall layer (see (2.8)). The point (X*,Z*)  
of flow separation is then defined by 

T T ( x * ,  z*) = 0. 

A t  such a point our finite-difference discretization in the downstream variable X is 
no longer valid as it does not allow for reversed flow. In  figure 7 we present a contour 
plot of ( T ~ -  1) in the ( X ,  2)-plane for X in the range (108,108.037) and Z in the range 
(0, ./a). Here we see that, after an interval of little variation, the total skin friction 
rapidly decreases until the last downstream location, at  which ( T ~ -  1) is negative and 
separation has occurred. At this point in our calcula.tion the numerical scheme used 
is no longer valid for the reason given above. We found it impossible to accurately 
resolve the position at  which separation occurs, though not through any deficiency 
in the code, but because we had reached the limit of our available computing 
resources. I n  fact we expect that the finite-difference approach of Cebeci, Khattab & 
Stewartson (1981) would be capable of tracing out a curve Z = Z,(X)  on which 
separation occurs. We believe that this separation is only of marginal interest 
because before it occurs the inflexional velocity profiles in the downstream direction 
will be massively unstable to  Rayleigh waves ; therefore we do not pursue it further 
here. 

Not surprisingly, the point of separation is found to  occur at  the position 2 = n / k ,  
the position at which upwelling occurs. In  figure 8 we present a series of contour plots 
of constant total streamwise velocity 

N 

UT(X, Y, 2) = Y + c U,(X, Y )  cos knZ, 
n=o 

at various downstream positions which shows the initial growth of the vortex. In the 
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FIGURE 8. Contour plot of the total downstream velocity field at the downstream positions 
( a )  X = 102, ( b )  X = 104, (c) X = 106, ( d )  X = 108. 

absence of the nonlinear vortex these plots would appear as a series of equally spaced 
horizontal lines. The growth of the vortex is then represented by increased curvature 
of the streamlines of constant streamwise velocity. A t  X = 102.0 (figure 8 a )  the 
nonlinear vortex has begun to grow until at X = 108.0 (figure 8 d )  we see the 
characteristic shape for Gortler vortices (see Hall & Horseman 1991). 

In figure 9 (u-e) we again present contour plots of the total streamwise velocity at 
the last five streamwise locations preceding the breakdown of our numerical code. 
At this stage we see the development of a secondary structure localized about 2 = 
n/a in the vicinity of the wall. This structure increasingly distorts the underlying 
streamlines until a t  the last point of our calculation (figure 9e) the flow is about to 
become reversed. As noted above we were unable to continue our calculation past the 
point given for figure 9 (e), however we would expect that if such a calculation were 
possible we wound find a small region of reversed flow centred about the point 
2 = n/u which would subsequently increase in size as the calculation were continued 
downstream. 
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4. Conclusion 
We have investigated the spatial nonlinear evolution of the fastest growing Gortler 

vortex which can occur in a boundary-layer flow . The mode occurs in a quasi-parallel 
form only a t  high Gortler numbers so our investigation is particularly relevant to 
flows where high Reynolds numbers and moderate curvatures are possible. Hence 
our investigation is, for example, relevant, to the flow over turbine blades and also t o  
the flow in jet engine inlets, though compressible effects would certainly be present 
in the latter cage. A crucial feature of the mode is that it occurs adjacent to the wall 
so that relatively high shear stresses will be induced by its presence. 

Our calculations suggest that the nonlinear development of the most unstable 
Gortler mode results in a reversed flow. Although such a point of separation gives 
little hope of following the development of these modes downstream past the point 
of separation we note one important point which arises from our calculations. Recent 
work on the secondary instability of nonlinear Gortler vortices a t  O(1)  Gortler 
number by Hall & Horseman (1991) has demonstrated that the fully nonlinear 
vortex velocity fields obtained numerically by Hall (1988) are highly susceptible to 
an inviscid Rayleigh instability. This possibility was suggested some years ago by 
Yraridtl(l937). This mode of instability is particularly relevant to flows for which the 
streamwise velocity field becomes inflexional in both the streamwise and spanwise 
directions. Such a situation arises in the present problem and hence we would expect 
the flow to be radically altered, due to the linear growth of Rayleigh modes and their 
subsequent nonlinear evolution, before the point of separation is approached, as is 
the case for Gortler vortices a t  O(1) Gortler numbers (see Hall & Horseman 1991 for 
a discussion). The question is currently under investigation. 

Thus we conclude then by noting that our calculations suggest that in relatively 
highly curved boundary layers, transition will be induced by the Rayleigh instability 
breakdown of the vortex structures driven by the Gortler instability. It should be 
noted that alternative instabilities such as Tollmien-Schlichting waves do not have 
growth rates as large as those of Gortler vortices or Rayleigh waves and are therefore 
likely to be unimportant in the transition process. 
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